Antigen presentation

Kenneth L. Rock, M.D.

Professor & Chair

Department of Pathology

UMass Medical School

Lecture outline

MHC I Ag presentation

MHC II Ag presentation

Dendritic cells & Cross-presentation (if time)

The principal adaptive immune defense against cancers & virally infected cells

MHC class I molecule

MHC class I antigen presentation

The MHC I antigen binding receptor

From Kuby

MHC class I genes

Mouse H-2 complex

Complex			Tla						
MHC class	I	1	1	· • III	I D		I Qa	I Tla	
Region	K	IA	IE	S					
Gene products	H-2K	ΙΑ αβ	IE αβ	C' proteins	TNF-α TNF-β	H-2D	H-2L	Qa	Tla, Qa

Human HLA complex

Complex	HLA										
MHC class	II			11	I						
Region	DP	DQ	DR	C4, C2, BF		В	C	A			
Gene products	DP αβ	DQ αβ	DR αβ	C' proteins	TNF-α TNF-β	HLA-B	HLA-C	HLA-A			

MHC class I genes are highly polymorphic

Now >10,000 alleles of MHC class I genes identified!!

Nomenclature

MHC Class I genes are highly polymorphic

Where are the polymorphic residues?

What will the polymorphisms affect?

Clinical importance of MHC polymorphism

Transplant rejection

Susceptibility to infectious disease (e.g. HIV elite controller)

Susceptibility to autoimmune disease

Responses to vaccines & immunotherapy

MHC I molecules –Expressed all (A,B,C) codominantly (both chromosomes)

How many different MHC I molecules can cells express?

How can ≤ 6 MHC I molecules present all Antigens?

Peptide Structure

Peptides bound to MHC molecules

Therefore, a single MHC I molecule can bind huge numbers of peptides (but not all)

With 6 different MHC I molecules, can "cover" much of the antigenic universe

MHC class I pathway utilizes the peptides generated from the normal catabolism of cytosolic & nuclear proteins Protein

Immune system modification of proteolysis

[Also a \(\beta \)5t subunit expressed only in the thymus]

Key points

The proteasome is required to generate the majority of presented peptides

The immune system evolved modifications of proteasomes to optimize antigen presentation.

How do class I molecules access cytosolic peptides?

8 to ~16 AA peptides
Most but not all sequences

Other events in the ER

Peptide-loading complex (PLC)

Tapasin (in PLC) & TAPBPR (not in PLC)

Promote & "edit" peptide-loading of MHC I molecules

Tapasin plays a role of retaining "empty" MHC I in the ER

Mechanism of peptide editing

Summary of key points:

Peptides are generated in the cytosol

TAP transports a fraction of the cytosolic peptides into the ER

• MHC I molecules form in the ER and associate with TAP and chaperones while awaiting a peptide.

 Peptide editors retain empty MHC I in the ER & help load high affinity peptides

Size of peptides bound by MHC I molecules

Proteasome often make N-extended "precursor" peptides

N-terminal trimming of peptides

Much of the trimming occurs in the ER

By the aminopeptidase = ERAP1/ERAAP

(note humans but not mice also have an ERAP2)

Importance of ERAP1

ERAP1 KO markedly alters MHC I antigen presentation in mice

ERAP1 polymorphisms linked to autoimmune diseases and immune responses.

ERAP1 unique-trims with a molecular ruler

Crystal structure

Summary

N-extended peptides are trimmed in the ER by ERAP1

ERAP1 trims with a molecular ruler

ER Trimming has specificity

Influences responses

Antigen presentation is a "bell & whistle"

MHC I molecules, tapasin, TAP transporter, immunoproteasomes, ERAP1 are not required for cell viability

Viral Immune evasion

Cancer immune evasion

To survive & progress, cancers need to evade CD8 T cells

Evasion by loss of the MHC I pathway is very frequent

This is a barrier to T cell-based cancer immunotherapy

Cancer immune evasion

Loss of key MHC I pathway genes

Transcriptional & post-transcriptional evasion

MHC II antigen presentation

What cells express MHC class I & II molecules?

These are precisely the cells that T cells need to monitor

Outcomes of bacterial infection

The major immune defense against cells infected with bacteria are CD4 T cells

MHC II sample peptides in endocytic compartments

MHC II peptide-binding receptors

3 molecules = HLA-DR, DP, DQ

Very similar tertiary structure to MHC I

Same regions highly polymorphic

MHC II monitors peptides from phagosomes (& endocytic compartments) How are these generated?

The endocytic compartment is also catabolic.

How do class II molecules get to phagosomes/endosomes to sample these compartments

Synthesis & assembly of MHC class II molecules

How is class II prevented from being saturated with peptides in the ER & then get to the right compartments?

Invariant chain

Clip region blocks the groove

Sorting sequence to endosomes

Key points

- Invariant chain binds newly synthesized class II in the ER
- Invariant chain blocks peptide binding to class II
- Invariant chain directs class II molecules to endocytic compartments
- Peptides are generated in endosomal compartments by acid optimal proteases

How are class II molecules activated in endosomal vesicles?

DM-MHCII interaction (from crystal structure of a trapped complex)

Model for DM-dependent peptide exchange

Specialization: B cell antigen presentation

B cells efficiently capture Ag through their surface antibody & internalize it into the MHC II pathway.

Important for T-B cell help

Regulation of MHC II (one aspect)

Key Points

- Invariant chain is hydrolyzed by proteases in the endocytic compartment
- A fragment of invariant chain (CLIP) is left in the peptide binding groove
- CLIP is removed by HLA-DM
- Peptides bind to class II molecules (facilitated by HLA-DM)
- •MHC II levels regulated by March I

So far we've discussed: MHC I presents endogenous antigens & MHC II presents exogenous antigens

Cross presentation = presentation of exogenous antigens on MHC I

Property of Dendritic cells & MØs

DCs can transfer eaten antigens into the MHC I pathway (called cross presentation)

DCs can transfer eaten antigens into the MHC I pathway (called cross presentation)

Dendritic Cells- Key APC for initiating T cell responses (priming)

TISSUES

LYMPHATICS

LYMPH NODE

Trails

