Innate Immunity: (I) Molecules & (II) Cells

Stephanie Eisenbarth, M.D., Ph.D.

FOCIS Advanced Immunology Course 2/5/24

M Northwestern Medicine®

Feinberg School of Medicine

Division of Allergy & Immunology

Center for Human Immunobiology

Skin/Mucosa

Complement

Myeloid Cells
Granulocytes
Macrophages
Dendritic cells

Innate lymphocytes ILC1/NK ILC2 ILC3

 $\gamma \delta$ T cells

NKT

MZB/B1 cells

Barriers

Destruction of foreign material

Removal of targeted or foreign material; antigen presentation

Eliminators and amplifiers of inflammation

Constituents of the Immune System

SELF vs. NON-SELF discrimination

What non-self patterns are detected during Listeria infection?

Will discuss at the end...

Part I: Molecules – how they recognize & protect

- Plasma proteins
 - Pentraxins (CRP, SAA, etc.)
 - Collectins & Ficolins
 - Complement
- Pattern recognition receptors
 - TLRs
 - NLRs
 - RLRs
 - DNA sensors
 - CLRs

Part I: Molecules – how they recognize & protect

- Plasma proteins
 - Pentraxins (CRP, SAA, etc.)
 - Collectins & Ficolins
 - Complement
- Pattern recognition receptors
 - TLRs
 - NLRs
 - RLRs
 - DNA sensors
 - CLRs

Complement

- Circulating inactive serine protease enzymes
- Cascade of sequential activation

Initiation

Host

Microbe

spontaneous hydrolysis C3

Name 3 diseases primarily a result of dysregulated complement activity

Under-activity?

Over-activity?

Complement Kills

- Hereditary Angioedema (HAE)
 - C1INH deficiency
 - Non-pitting edema
- Paroxysmal Nocturnal Hemoglobinuria (PNH)
 - CD59 or CD55 (DAF) deficiency
 - Intravascular RBC lysis
- Hemolytic Uremic Syndrome
 - CD46, Factor H/I deficiency ("atypical HUS")
 - Most common cause of pediatric renal failure (all forms HUS)
- What is eculizumab and how does it work?

Complement pathway inhibitors

- Soliris (eculizumab) = Recombinant humanized monoclonal antibody directed against
 C5 → prevents production of terminal complement components
 - 2007: Approved for PNH.
 - 2010: Most expensive drug in the world (~\$410,000/yr).
 - 2011: Approved for aHUS
- Avacopan = C5a receptor inhibitor → reduce PMN chemoattraction & activation
 - 2021: Trialed for ANCA-associated vasculitis
- Berinert, Cinryze = C1-INH replacement therapy
 - Hereditary angioedema
- Transplant rejection, IgA nephropathy, glomerulonephritis, Lupus nephritis, ischemic reperfusion injury, membranous nephropathy...

 Zipfel et al Frontiers Immunology 2019

How do cells recognize invasion?

Pattern recognition receptors distinguish self from non-self

- Detect pathogen directly
 - Pathogen Associated Molecular Patterns (PAMPs)
 - Conserved, foreign structures
 - Composition & location
 - LPS, Flagellin, CpG, dsRNA
- Detect damage microbes inflict
 - Damage Associated Molecular Patterns (DAMPs)
 - When cells die they release or expose molecules not normally seen
 - Uric acid crystals, ATP, Alarmins (IL-33, HMGB1)
 - Loss of normal self molecules
 - Sialic acid

NOTE: Not all cells express the same repertoire of PRRs

PRRs survey different cellular compartments

- **1. TLR** (Toll-like Receptors) PAMPs extracellular or phagocytosed
- **2. CLR** (C-type Lectins) Carbohydrates/glucans
- **3. NLR** (NOD-like Receptors) Cytosolic PAMPs & DAMPs
- **4. RLR** (RIG-I-like Receptors) Cytosolic Viral RNA
- **5. CDS** (Cytosolic DNA Sensors) Cytosolic nucleotides

Macrophage, dendritic cell, epithelial cell, etc.

Toll-like Receptors (TLRs): specificity

- 13 TLRs humans/mice
- Germ-line encoded
- PAMPs from bacteria, viruses & fungi
 - Lipids, lipoproteins and nucleic acids
- Specificities are subject to natural selection by infectious organisms
- Different sets of TLRs are expressed on different cells

TLRs use two signaling pathways

MyD88 → NF-k β TRIF → IRFs

Pro-inflammatory cytokine induction Changes in surface molecules Anti-viral state
IFNs

TLRs & Disease

- Mutations in TLR3 → HSV encephalitis
- Mutations in MyD88 \rightarrow invasive bacterial infections

Clinical uses:

- Numerous TLR agonists and antagonists under development for cancer, vaccines (more in lecture 2), autoimmunity, etc.
- TLR ligands = vaccine adjuvants
 - CpG
 - MPL (Monophosphoryl Lipid A)
- Aldara (an imidazoquinoline) = TLR7 agonist in clinical use topically for warts and pre-cancerous lesions in skin
- Excessive TLR4 triggering → septic shock
 - TLR4 antagonists in Phase III trials

NOD-like receptors (NLRs)

- Cytosolic PRRs
- Triggered by numerous stimuli
 - Membrane disruption
 - Cytosolic PAMPs
 - DAMPs
- "Backup detection system"
- Activate inflammasomes...

Inflammasomes: primary mechanism of regulating release of IL-1b & IL-18,

Pyroptosis

Autoinflammatory diseases

- Gout
 - Uric acid crystals
 - IL-1 pathology
- Periodic Fever Syndromes
 - Nlrp3
- Crohn's Disease
 - NOD2
 - Mixed type disease

Gout

Cyropyrinopathies

RLRs: cytosolic dsRNA

- RIG-I, LGP2 & MDA5
 - dsRNA is an obligatory replication intermediate for RNA viruses
 - dsRNA with exposed triphosphate @ 5' end (capped on human mRNA)
 - RNA-DNA heteroduplex, Long dsRNA, Blunt end short dsRNA
- DExD/H-box family helicases: CARD & helicase domains
 - DNA & RNA sensing
 - DDX3, DDX60
- MAVS
 - Signaling

Cytosolic DNA Sensors (CDS)

Transform viral DNA into RLR ligands
Recognize long DNA structures
Enzymatically produce CDS ligands to recruit
multiple pathways

- DNA in cytosol → RNAPolIII
 → dsRNA → RLRs
- ALRs (Aim2, IFI16)
 - dsDNA
- DAI
 - dsDNA
- DDX41, DHX9, DDX36...
- cGAS
 - dsDNA
- All induce type 1 IFN!

STING (stimulator of type I IFN genes) pathway

cGAS = DNA dependent cyclase (enzyme) → cGAMP → STING → IFNs

STING/cGAS important checkpoint in transformation and cancer immunity

What non-self patterns are detected during Listeria infection? Intracellular Gram+ flagellated bacteria

- Extracellular → Phagocytose → Escape into cytosol
- TLR2 (PGN)
- NOD1/NOD2 (cytosolic PGN)
- TLR5 (flagellin)
- Nlrp3 (LLO)
- cGAS & RIG-I (bacterial nucleic acids)
- → PRRs can recognize the same pathogen without recognizing the same PAMP

Anti-viral state

Production of IFNs induce expression Type I IFN of enzymes that block viral replication Type I IFN

> **IFN** receptor

Induced by α/β IFN

cell

- 100s ISGs = IFN stimulated genes
- Enhances MHCI antigen presentation
- Blocks viral entry
- Blocks viral propagation

CDS & Disease

- Autoimmune disease
 - PRR-promoted adaptive immune dysregulation (often with autoantibodies)
 - Example: TLR7 & Lupus
- Autoinflammatory disease
 - Sterile innate cell-driven inflammation without significant adaptive immune dysregulation
 - Example: NLR-mediated IL-1 over-production
- Hyperactivation of CDS associated with an overlap category:
 Type 1 Interferonopathies (enhanced Type 1 IFNs)
 - Aicardi-Goutieres Syndrome
 - SAVI (STING-associated vasculopathy with onset in infancy)
 - Autoinflammation and Autoimmunity

Autoimmunity ≠ Autoinflammatory

T/B cell mediated vs. innate inflammation (cytokines, granulocyte activity, etc.)

How do we treat autoimmune diseases? How do we diagnose?

How do we treat autoinflammatory diseases? How do we diagnose?

Questions to ponder...

- How does the innate immune system recognize Helminths? Allergens? Transplanted organs? Self tissue?
- Do PRRs recognize/respond to commensal bacteria?

Pattern Recognition Receptors	Location	Specific Examples	PAMP/DAMP Ligands
Cell-Associated			
Toll-like receptors (TLRs)	Plasma membrane and endosomal membranes of dendritic cells, phagocytes, B cells, endothelial cells, and many other cell types	TLRs 1-9	Various microbial molecules including bacterial LPS and peptidoglycans, viral nucleic acids
NOD-like receptors (NLRs)	Cytosol of phagocytes, epithelial cells, and other cells	NOD1/2	Bacterial cell wall peptidoglycans
		NLRP family (inflammasomes)	Intracellular crystals (urate, silica); changes in cytosolic ATP and ion concentrations; lysosomal damage
RIG-like receptors (RLRs)	Cytosol of phagocytes and other cells	RIG-1, MDA-5	Viral RNA
Cytosolic DNA sensors (CDSs)	Cytosol of many cell types	AIM2; STING-associated CDSs	Bacterial and viral DNA
C-type lectin—like receptors (CLRs)	Plasma membranes of phagocytes	Mannose receptor	Microbial surface carbohydrates with terminal mannose and fructose
		Dectin	Glucans present in fungal cell walls
Scavenger receptors	Plasma membranes of phagocytes	CD36	Microbial diacylglycerides
N-Formyl met-leu-phe receptors	Plasma membranes of phagocytes	FPR and FPRL1	Peptides containing <i>N</i> -formylmethiony residues

Soluble			
Pentraxins	Plasma	C-reactive protein	Microbial phosphorylcholine and phos- phatidylethanolamine
Collectins	Plasma	Mannose-binding lectin	Carbohydrates with terminal mannose and fructose
	Alveoli	Surfactant proteins SP-A and SP-D	Various microbial structures
Ficolins	Plasma	Ficolin	N-Acetylglucosamine and lipoteichoic acid components of the cell walls of gram-positive bacteria
Complement	Plasma	Various complement proteins	Microbial surfaces

Questions?

Discussion & Break

Innate Immunity: (II) Cells

Stephanie Eisenbarth, M.D., Ph.D.

M Northwestern Medicine[®] Feinberg School of Medicine

Part II: Cells (aka the Sentinels)

- Granulocytes
 - Neutrophil, Eosinophil, Basophil, Mast cell
- Monocytes/macrophages
- Dendritic cells
- Innate lymphoid cells

CCL19

Myeloid Cells

- Recognize microbes
 - PRRs
 - Complement coating
 - Antibody coating
- Ingest & destroy microbes
- Kill infected/injured cells
- Regulate tissue homeostasis
- Antigen presentation
 - Help T cells

Figure 1.4 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

What about these cells?

- Function with T cells and B cells
 - Some require antibody as a "receptor"
 - Can also use PRRs
- What do they fight?
 - Ectoparasites/large pathogens
 - Allergens!!?!
- How do they fight?
 - Digest
 - Expel/flush

Figure 1.4 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Two pathways for macrophage development

During inflammatory reactions

Tissue-resident macrophages

Macrophages respond to conditions in the tissue to regulate homeostasis and pathogen clearance

Alternatively
Activated Mac
(AAM) or
"M2"

Figure 3.21 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Chronic Granulomatous Disease (CGD)

- Recurrent bacterial infection
- Granulomas of skin, liver, lungs, lymph nodes observed
- Gene defect:
 - gp91 phox (X-Linked)
 - p22 phox (Autosomal Recessive)
 - p47 phox (Autosomal Recessive)
 - p67 phox (Autosomal Recessive)
- Phagocytic cells ingest but do not kill bacteria due to failure to form oxygen radicals

What is wrong with this picture? \rightarrow

IFNγ and macrophage activation

• Mendelian susceptibility to mycobacterial disease (MSMD) – Ifn γ -mediated protection (IL-12, Ifn γ , Stat1 defects)

 Failure of CD4+ T cells to activate macrophage killing of intracellular bacteria

- TNF blockers might interfere with this process...
- Anti-IFNg autoantibodies can do the same

Bustamante et al Semin. Immuno. 2014

Questions?

Neutrophil NETs

- Neutrophil extracellular traps
- NETosis with cell death traps microbes
 - Extrusion of chromatin decorated with antimicrobial molecules (e.g., elastase, MPO)
 - Suicidal vs. vital NETosis
 - Limited other cells types can also engage this pathway
- Role in driving autoimmunity?

MHC class I on normal cells is recognized by inhibitory receptors that inhibit signals from activating receptors NK cell inhibitory receptor MHC class I

'Altered' or absent MHC class I cannot stimulate a negative signal. The NK cell is triggered by signals from activating receptors

NK Cells (ILC1)

- Different from NKT cells
- Germline encoded receptors
- Kill cells that are missing "stop" signals
 - Inhibitory receptors
 - KIRs
- Kill cells that express foreign or stress signals
 - Activating receptors
 - CLRs
 - NKG2D
 - FcgRIII (CD16)
- Infections
- Tumors

Figure 3.31 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Innate lymphoid cells

ILCs make many of the same cytokines as T cells but lack TCRs

May contribute to
early cytokine
responses in host
defense and
inflammatory diseases

Questions?

DCs & the next phase of immunity

DCs survey for pathogens or host damage (via PRRs) and respond by processing antigens and providing "second signals"

T cell priming requires 2 signals to avoid anergy: antigen (constant) + co-stimulation (activated DC)

Figure 1.5 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

DCs = translators between innate & adaptive immunity

Why are DCs the most efficient APCs for initiating immune responses?

Will discuss in a few slides

DC and related subsets

DCs present antigen to CD4+ and CD8+ T cells through distinct pathways

PRR stimulation induces DC activation ("maturation")

Immature DC

Peripheral and lymphoid tissues
Highly endocytic
Low surface MHC-II and costimulators

Antigen accumulation

Mature DC

Lymphoid tissues
Endocytosis reduced
High surface MHC-II and costimulators

T cell stimulation

The innate immune system provides second signals required for lymphocyte activation

2nd signals for B cells:

CR2/CD21: Activated C'

TLRs: PAMPs

2nd signals for T cells:

CD28: B7 family members

(CD80/B7.1, CD86/B7.2)

ICOS: ICOSL

OX40: OX40L

CD137: 4-1BBL

Inhibitory signals for T cells:

PD1: PDL1, PDL2

CTLA4: CD80, CD86

Capture and presentation of antigens by dendritic cells T cell that recognizes antigen is activated pecific antigen Not illustrated: naïve T cells arrive via HEVs PRR activation Ag processing/presentation on MHC Co-stimulatory molecule expression CCR7 expression follow a gradient of CCL19/CCL21 DCs then die (cellular timer)

Courtesy of Abul

Why are DCs the most efficient APCs for initiating immune responses?

- Receptors for capturing and reacting to microbes: Toll-like receptors, complement receptors, FcRs, etc.
 - Unique to DCs?
- Express co-stimulatory molecules: signal 2 for T cells
 - Unique to DCs?
- Location: at sites of microbe entry (epithelia) and ability to interact with NAÏVE T cells
 - Why not activate naïve T cells in the skin/lung/gut?
 - Macrophages, monocytes, B cells?
 - Why would macrophages/monocytes express signal 1 & 2 in tissues?
 - DC migration is a critical step in T cell priming
 - How do DCs find the LN?

Innate instruction of adaptive immunity: implications

Once this principle was understood, the role of adjuvants could be explained

- HBV vaccine: subunit and adjuvant
- Adjuvare = to help
- Hundreds of different adjuvants
 - CFA, Aluminum hydroxide, MF-59 (Squaler (Alum+MPL)

Discussion

Would an INACTIVE influenza virus activate innate

 adaptive?

 How is innate immune activation initiated to tumor or alloantigens?

Questions?

PRR

- Further reading
 - Abbas, Lichtman & Pillai Cellular & Molecular Immunology
 - Janeway's Immunobiology